a2 United States Patent

Nakajima et al.

US009304828B2

US 9,304,828 B2
Apr. §5,2016

(10) Patent No.:
(45) Date of Patent:

(54)

(71)

(72)

(73)

")

@
(22)

(65)

(1)

(52)

(58)

HIERARCHY MEMORY MANAGEMENT

Applicants: Akio Nakajima, Santa Clara, CA (US);
AKkira Deguchi, Santa Clara, CA (US)

Inventors: Akio Nakajima, Santa Clara, CA (US);

AKkira Deguchi, Santa Clara, CA (US)

Assignee: HITACHIL, LTD., Tokyo (JP)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35

U.S.C. 154(b) by 439 days.

Appl. No.: 13/628,363

Filed: Sep. 27, 2012

Prior Publication Data

US 2014/0089585 Al Mar. 27, 2014

Int. Cl1.
GO6F 9/50
GO6F 12/08
GO6F 13/16
U.S. CL
CPC

(2006.01)
(2006.01)
(2006.01)

GO6F 9/5077 (2013.01); GO6F 12/0813
(2013.01); GO6F 12/0868 (2013.01); GO6F
12/0871 (2013.01); GO6F 13/1663 (2013.01)
Field of Classification Search
CPC GOGF 9/5077;, GOGF 12/0813; GOGF
12/0871; GOGF 12/0868; GOGF 13/1663
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

6,789,152 B2* 9/2004 Hoeseetal. 710/305
7,849,272 B2 12/2010 Kalmuk et al.
8,595,313 B2* 11/2013 Weberetal. 709/212
2009/0144388 Al 6/2009 Gross et al.
2009/0292861 Al* 11/2009 Kanevskyetal. 711/103
OTHER PUBLICATIONS

Denning, Peter J., Virtual Memory, Sep. 1970, Computing Surveys,
vol. 2, No. 3, 37 pages (pp. 153-189).*

* cited by examiner

Primary Examiner — Gary W Cygiel
(74) Attorney, Agent, or Firm — Mattingly & Malur, PC

(57) ABSTRACT

In one embodiment, a storage system comprises: a first type
interface being operable to communicate with a server using
a remote memory access; a second type interface being oper-
able to communicate with the server using a block I/O (Input/
Output) access; a memory; and a controller being operable to
manage (1) a first portion of storage areas of the memory to
allocate for storing data, which is to be stored in a physical
address space managed by an operating system on the server
and which is sent from the server via the first type interface,
and (2) a second portion of the storage areas of the memory to
allocate for caching data, which is sent from the server to a
logical volume of the storage system via the second type
interface and which is to be stored in a storage device of the
storage system corresponding to the logical volume.

20 Claims, 21 Drawing Sheets

Remote Memory Storage 2 Block 10
Interface 25 Interface 23
1 H
R ¥_

Server Memory
data area 100

[P O o ox 08 0 0 KOG O O XN DOR 90X DO 20 KR 0D 9 GO DK DX OH 9GK 0% X0 KO

Storage Cache
Memory area 110

Memory
Partition Table26

US 9,304,828 B2

Sheet 1 of 21

Apr. 5, 2016

U.S. Patent

o

7 adel01§

o

/._u\

14V d0ldd

1 Dl

€T 9oep91u|
O13d0id

<1 Ndd

T 19A19G 1S0H

11
Alows N VYA

US 9,304,828 B2

Sheet 2 of 21

Apr. 5, 2016

U.S. Patent

¢ Ol
(90edS SSaUppyY INVYA)
ssaippy AJowad |edisAyd
<€ NS
01¢
o eleQ P# B18Q o e18(] g# eleq ey eleq
UOI1BD0||Y UoI11BI0}jY UoI1RI0Y uOoI1B20}|Y uonedo|Y
~ & ~ A ~ K Pavy m ~ A
187 N W J 18% N 37 i
S / S ’ !
N / \ / i
~]
N 7 ’
“ ¥4 (N 4 §
St \ 4]
% />~ .. duidde
H S FAN I AJowalp
(92edsS sS24ppY {ENIIA SO) F z/ 7N \/\\.
ssaippy Alowsy |21807 7 K% /z oy
AII.I e —— \.I|I.||I..I|_I.”V1l.l||.III.IJF\.II_IIIIIIJV.l.IlI.III..MI_IlIIIII
~7 K S / N]
007 L & £ AN §
I e1ep CH elep T# e1Ep
ov\/\ Asowdw JOAISS ov\/\ Ajowaw JaAIas ov\/\ Asowdw JaAI3S

US 9,304,828 B2

Sheet 3 of 21

Apr. 5, 2016

U.S. Patent

€ 9Ol

9¢oiqel uoiiilied
AIOWBN

£T3|qey aiedoyjje
Alowiaw 1anles

e AJowBin yseld

87 84015 elEQ ¢
- ¢ ndd AIOWSIA AYHC
€¢ 9oelIa1y| G 283U

0120/ 7 38040315 Atowian ajoway
VY aVi
18
€T adelaiy ST B3|
O oo|g Alouwispy 10wy
91a|qe) Juiddeiy FACI(1AN

SSUPPY

AJSAOISIP 931A3Q

1 Aowan yseld

T Ndo

T 19A12G 1SOH

11
AJOWaN INVYHA

US 9,304,828 B2

Sheet 4 of 21

Apr. 5, 2016

U.S. Patent

¥ 'Ol

g7aige] uoniued
AJOWBIN

“ 00T eoJe elep
_>L_oEm_>T_m>l_mm
_

T Aowa ysel4

T7 Mowsn WWHQ

£ a%ejialu|
Oi>pold 7 WWN..“OHW

GZ @2ejiaju|
AloWwaN 310WaY

US 9,304,828 B2

{aoeds ssaippy ysej4 ajoway)
Y# ssaippy AJowapy [e3isAud

G Ol

< v
ovc

(e02ds ssauppy yseyd |edol)
£# SS3IpPY AoWIN jeaisAyd

p#
BIB(] UOIIEIOf|Y

)

<€ 2V
0td

7
!
F o4 e1eQ
]
i UoBI0||Y
]
]
I
]
]

(@0edS SSRIPPY INVHQ d10WaY)
SS2IpPY AJoWd {edisAyd

=

gt
™~
<t

-

Sheet 5 of 21

0Z¢

T# 5S34ppy Asowa {ea1sAud

Suiddey
Alowain

q# e1eQ
COB.mUO:xx

!
(@2eds ssauppy VYA [2207) \
/
1

Apr. 5, 2016

U.S. Patent

=
01¢

(93eds ss2ippY |ENLIA SO)
$S2UPPY AJOWS 18218017

AI\JQIII..III.I.II.IN.I..IIIIII.I.IIIII

L4
4
[}
7
!
i
!
)
!
[
§

L

o¢ e1eQ
UOIEd0}{Y

A

o v e e e v o e e v o e o o ot
-t 7

4
ya

e# ele(
uofeIo|Y

7

%

1

1 {
R Y
1 !
LY i

00¢

AV
0374

€4 elep
Atowiawl 1sAlas

VaYi
ov

c# eiep

Alowswi 1anias

VaVYi
or

T# elep
Aowiaw tBAsas

o e e s e v v s e o o e

US 9,304,828 B2

Sheet 6 of 21

Apr. 5, 2016

U.S. Patent

7 23e101§

z AOWBIN ysel

1Z
AJCWBIN INVYYHA

GZ 9depiaiu|
AJOUajA F10WRYy

9 'O

7 23eJ01§

¢ Aowa yseld

TC
AJOWaN INYYHA

G7o2eI9u|
Asowaln s10way

R ——

g

19

G1 @oeMdU|
Alowa alowsay

T AMowdy ysejd

1t

AJOWBIN INVHA

1 J9AJSS 1SOH

L

US 9,304,828 B2

Sheet 7 of 21

Apr. 5, 2016

U.S. Patent

(soeds ssauppy yse|4 s1oumg)

P# SS24ppy Alowsin jeatsAud

£ 75

<€ =
q0t¢

{aoeds ssaippy ysejd j2a01)
£# SSaUPPY AtowdiN {es1sAYd

ele uchesoily

p#

A

EOvE

& Pavy
0gZ

(92edS SSa4pPY IAIVHA SaTiuay)
Z# SS24PpPY AJOWBIN [eDISAUd

[}
[
§
!
i
I

i
!
1
/
]
I
]
!
!

<€ Vavs
lerad

(9ordS SSRIPPY INVYQ j2001)
1# SS24ppy AJOWBIN {BIISAYd

[47
_.\/\
Suiddepy

AJOWRIN

8027

o4 eleq
UoIeI0|Y

)

€4 B1e(

v Vav4
012

{90eds ss3ippY [ENMIA SO)
T# SS24ppy AJoway jed1807

ATIIJ““VIIIIIIIII

{

[}
i

'
I
!
]
]
!
!
!
!
]
‘
7
f
[
!

00t

ov

€4 elep
N Alowiswl ISAISS

L]
w
|}
)
.}
i
|
i
i
i
1

uoneso|jy

7

i /4

J

3

o o 5o 2 0o o s 200 o 1o s 5 S 2 S0 o 2 5 G 2 5 5 e 20 S S S B 2 o e 2 o0
]
i

AV

ov

T4 elep
Alowawl I9AlaS

US 9,304,828 B2

Sheet 8 of 21

Apr. 5, 2016

U.S. Patent

i |

ade3u|
Ajowain 210wy

AJOWIBIA yseid

AloWa INYHQ

T JaA13S 1S0H

8 'DId
Z 93e1015 ¢ 93e1015
AJOWBIA Yse} AJowd ysej4
AIOWBIN NVHA AJOWBIN INVHA
||||||||||||||||||||||||||| ot ELE Ll
308J433U] 0% 0B
Alowaiy 210wy AJOWIDIN DJ0WDY
® —7 ¢
18

aoeIu|
AJOWDN 210WaY

Atowaip yseld

Alowain INVHG

T JaAJas 150H

US 9,304,828 B2

Sheet 9 of 21

Apr. 5, 2016

U.S. Patent

(92edS Ssa4ppy yse|d a10way) 6 ‘Did
f# 5S2IppY AIOWdIA [8215AUd
ore or¢
qQ#
B1E(] UOIIEDO|IY
{(9oedS ssauppy yseyd jeao)
€4 Ssaippy Adowa jeaisAyd \4
<€ ~ <€ Vavi S
04 2.
q0€¢ p# k47
AS
ele(UOIIeI0||Y s
{eoeds Ssauppy INVHQ 210wiay) A s\
SS2UppPY Adoway jeaisAyd .. e
< : < =
Va4 H = 7
0Tz M\/\ 1144 \\ o4 e1eq
! Buddep e uonedo||y
(a0edS SSRUPPY NVYH(Q [e201) I Aowapy \\ A
T# SS2UppyY Adoway jeaisAyd .. /. _—
] ’
=7 5 \\ =T 1
qot¢ H / BOTZ \
N s ._ e ejeQ
¢ [474 uoleso
{s0edS Ssauppy |ENIHA Z# SO) .. s\\Eumam SSaUPPY [BNUIA T# SO) .»\/\ HEsollv
Z# ssalppy Aiowapy {e21307 \ e T sseuppy Alowspy jedi8o7 1 %
e e o e e e e e e e e o el e o
\/w 7 \S \\/\l] §
q00¢ 4 £ 2007 i)
€H elep T# elEpP
ow\/\ AJOWBW JBAISS ov\/\ Alowaw JaAIas

US 9,304,828 B2

Sheet 10 of 21

Apr. 5, 2016

U.S. Patent

OT 'Old
0000 000¥X0 ysejd ¥ 921A9Q
0000 0TX0 Nvda v/N
Aydede) paiarlsip 2dA] WaN AR 10WdY
£6 Vavd 76 ya v 16 Va4

LT 9jqe} AJaA0DSIp 221N

US 9,304,828 B2

Sheet 11 of 21

Apr. 5, 2016

U.S. Patent

1T 'Ol
666CX0 01 000TX0 ysejd V 30iA(666E£X0 01 000ZX0
6665X%0 01 000SX0 NVYYHQ (1e20}) W/N 6661TX0 01 000TX0
ssaippe AJowsA |ed1sAyd adAl wan 301A3 (g 210WY ssauppe AJowsi |enIA
yo1 N g0 N o1 N 101

9T ajqe) Suiddein ssauppy

US 9,304,828 B2

Sheet 12 of 21

Apr. 5, 2016

U.S. Patent

1 'Ol
v/N ayoe) adeiols yse|d 6668%0 03 000LX0
T J3AJRS AJOWRIN JOAIBS ysej4 6669X0 03 DO0EX0
PELSEL Asows N Janias ysej4 6667X0 03 000TX0
0 1oAJ3S Alowsin JonIDS Wvdd 666/4X0 031 0009X0
V/N 3yoe) a3es01s WVvdda 6665X0 01 000SX0
ADINS(QG 210WAY adA] uoniied adA] W ssalppe Aloway jeaisAyd
yiT /N €11 ar Y It Y

9z @]qe uoniled Alowsiy

US 9,304,828 B2

Sheet 13 of 21

Apr. 5, 2016

U.S. Patent

€l Oid
6667X0 01 000TX0 ysejd T 42AJ9S
6660X0 03 0000%0 WVYHa 0 1oAI8S
SS2IpPY jedisAyd paresolly | odAL W 321A3Q 310WdY
ezt Y war e Y

LZPlgeL 21ed0}je AJoWaw JaAIRS

US 9,304,828 B2

Sheet 14 of 21

Apr. 5, 2016

U.S. Patent

¥1 'O

-

Aypedes Asowaw alepdn

sers Y
uofledolje Ayioeded 3sanbau
yers N N
¢ Adeded Jo/pue
douewsoyiad y3dnoua
SOA
gers N

gz 9jqe)} uonilied AJoWdW 92U1d)21
03 Ayoeded suimad wesdoud adeiols
9g1s

"IJNIABP AJowisUl 210wl pue
[e20] 40 adA} eipaw yoes Jo} Ajpeded 199

ze1s N

30IARP Ajowaw a10wal AIBA0ISIP

1€1s NV

-—»

US 9,304,828 B2

Sheet 15 of 21

Apr. 5, 2016

U.S. Patent

ST 'S

D

"‘AJjua
JJIADP JDAIBS D1}109dS o AslUud dSACWDI

ep1s N

150y 9yl
03 uipuodsaliod Asouwaw a1ed0j|e-ap

wis N

uoneoydde jo O J9AI3S dOIS

wis 7~V

-—»

US 9,304,828 B2

Sheet 16 of 21

Apr. 5, 2016

U.S. Patent

pajted

91 'Ol

pui

ELE

guiddey ssauppy o1epdn weidoud saaias

9515 N

/.7 9|ge1 djeaq|ie
Asowaw 19135 dlepdn wiesdoud s8riois

5618 NV

EREIVE

Alousaus adelols 03 pulg Alowaw aNss|

vs1s N

SaA

S1uapyns Ayoeded
Ajowauwl aowal |
ON

es1s N

OoN

EIU3IYNS Alidedes
Ajowawl |e20} S)

zs1s

AJCUWIBW JaAIS MBU s1Sanbal O 1SOH

eiep

18IS

S

A

US 9,304,828 B2

Sheet 17 of 21

Apr. 5, 2016

U.S. Patent

pajted

N

L1 'Ol

pud

97 2|qe}
33e20||e Adowaw Janias aiepdn SO 150H

9915
i7 9|qe1 suiddey
SSaUppy lepdn wiridoid a881038
s91s SoA

£ 9|qe1 Suiddew 3uisn
o Buiddeus ssauppe 3oayd

915 N

9oejio1ul Asowaw adelols
01 1sonbaJ uoiledoj|e-ap Alowaw anss|

g915 NN ON

A dAJoWaW |BOO] S| VI
s

A
2915 N

3senbal 2344 s159nbal SO ISOH

191

US 9,304,828 B2

Sheet 18 of 21

Apr. 5, 2016

U.S. Patent

uonelado Asowisw
JO }Nsa4 uin3al

BT "D

00T esJe
e1ep AIoWB|N 19AIBS

WOJ4 BIEP PEDJ 0] PUIS

LT3]qeL 31ed0|e
AJowaw JoAIDS }I3YD

iajsuely eyep

<€

agei0ls

uojielado peal
Ajowawl anssi

JSOH

US 9,304,828 B2

Sheet 19 of 21

Apr. 5, 2016

U.S. Patent

uolesado Alowaw

JO }nsa4

Uiniad

Z 93eu03s jo

00T eaJe

eiep AJoWa Janias 01

1SAJISS W04}

elep peal

A’

L731qE] S1e20jjEe

Alouwiawd Jan

135 yoayd

<€

Jajsuesy ejep

uoleiato 21im

adelols

AJouwaw anssi

1S0H

US 9,304,828 B2

Sheet 20 of 21

Apr. 5, 2016

U.S. Patent

8¢ 24015 ejep
01 QT T eoJe ayoed 98eiols
w04} eyep Auip @3eissp

uoesado alum Q|

{7 "5

¥20]q 40 }nsaJ uinial

eaJe ayoe
01 B1EP 91LIM 3403S

<€

Jojsuel] ejep

Ble2p S}liM pua§

Apeau uajsuel) puas >
|
9z 9iqe] uoniyed
Alowsw }a3yd
uoiyesado
<€ BHJIM O} MD0[q aNsst
28el01s 1SOH

US 9,304,828 B2

Sheet 21 of 21

Apr. 5,2016

U.S. Patent

uofeiado peas Of
Y20}q JO 1ynsas uImal

T "5

ejep
Ol peaJ oojq uiniad

01T eaJe Asowsw
2Yoed 01 g7 3101S elep
wouy eyep peas duidess

92 @|gel uonijed
Asowisw Y382

<€

JoJSUel} ejep

23e.4018

uonesado
peaJs O] 3}20jq anssi

150H

US 9,304,828 B2

1
HIERARCHY MEMORY MANAGEMENT

BACKGROUND OF THE INVENTION

The present invention relates generally to storage systems
and, more particularly, to hierarchy memory management
between server and storage system using RDMA (Remote
Direct Memory Access) technology.

Remote memory access and allocation technology such as
RDMA (Remote Direct Memory Access) is available. One
approach involves dynamic memory management in an
RDMA context (see, e.g., U.S. Pat. No. 7,849,272). Another
approach involves distributed shared memory on a plurality
of computers (see, e.g., US2009/0144388). Server attached
PCI-Express™ flash is cheaper bit cost than large capacity
RDIMM (Registered Dual Inline Memory Module) module.

A server has limited physical memory capacity which
depends on the CPU architecture. To expand the capacity of
Server DRAM (Direct Random Access Memory), RDIMM
(Registered Dual Inline Memory Module) is required. Large
capacity RDIMM is highest cost of any other DIMM type.
Server DIMM socket is not hot swappable. To expand the
memory capacity of the server, the server administrator stops
the OS (Operation System) and stops power to the server, and
then the server administrator installs DIMM to DIMM slot of
the motherboard.

Local server memory provides higher performance than
remote memory access by RDMA (Remote Direct Memory
Access), since DDR SDRAM (Double-Data-Rate Synchro-
nous Dynamic Random Access Memory) interface has higher
access latency and capacity of network throughput than
RDMA network. DRAM has lower access latency than flash
memory. Conventional technology does not disclose (1)
which type of local memory or remote memory is better
hierarchy for performance and (2) which type of DRAM,
flash memory, or other new memory device has the best
hierarchy of DRAM memory tier. Also, current memory allo-
cation of RDMA protocol does not provide memory type
information.

Cache memory of storage system constitutes DRAM and/
or flash memory. Current storage system does not share
memory of storage system as both of storage cache and server
memory expansion.

BRIEF SUMMARY OF THE INVENTION

Exemplary embodiments of the invention provide a server
that manages local and remote memory and hierarchy. A
storage manages a server allocation memory region. The
storage manages partitioning of DRAM or Flash memory
between storage cache data area and server memory data.
Both the server and the storage have remote memory interface
and storage block I/O interface. The server has remote hier-
archy cache management to allocate or de-allocate local or
remote physical address space. The storage manages to allo-
cate cache data area and server memory data. As such, the
server manages the hierarchy memory and it is easier to
expand the server memory area without the host OS (Oper-
ating System) stopping. Furthermore, the storage provides
memory space as server memory data and consolidates server
memory resources to physical memory pool of multiple stor-
ages.

In accordance with an aspect of the present invention, a
storage system comprises: a first type interface being oper-
able to communicate with a server using a remote memory
access; a second type interface being operable to communi-
cate with the server using a block I/O (Input/Output) access;

10

15

20

25

30

35

40

45

50

55

60

65

2

a memory; and a controller being operable to manage (1) a
first portion of storage areas of the memory to allocate for
storing data, which is to be stored in a physical address space
managed by an operating system on the server and which is
sent from the server via the first type interface, and (2) a
second portion of the storage areas of the memory to allocate
for caching data, which is sent from the server to a logical
volume of the storage system via the second type interface
and which is to be stored in a storage device of the storage
system corresponding to the logical volume.

In some embodiments, the controller is operable to manage
capacity information for each media type of the memory in
the storage system. The memory includes at least one of
DRAM memory or Flash memory. The controller is operable
to manage (3) a third portion of storage areas of the memory
to allocate for storing data, which is to be stored in a physical
address space managed by an operating system on another
server and which is sent from said another server via the first
type interface, and to manage the second portion of the stor-
age areas of the memory to allocate for caching data, which is
sent from said another server to a logical volume of the
storage system via the second type interface and which is to
be stored in a storage device of the storage system corre-
sponding to the logical volume. The controller is operable to
provide, to the server in response to a request from the server,
capacity information for each media type of the first portion
of storage areas of the memory in the storage system.

In specific embodiments, the controller is operable, if a
remote memory interface of the server for communicating
with the first type interface is stopped, to remove the server
from an entry of a server memory allocate table which stores
information on allocated memory by the storage system for
one or more servers. The controller is operable, in response to
aremote memory binding request with one of required capac-
ity and memory performance or memory assign location
range of the first portion of storage areas of the memory from
the server, to return memory binding result with mapped
address information to the server. The controller is operable,
in response to a remote free request from the server, to remove
the server from an entry of a server memory allocate table
which stores information on allocated memory by the storage
system for one or more servers.

Another aspect of the invention is directed to a method of
memory management for a storage system having a first type
interface being operable to communicate with a server using
a remote memory access, a second type interface being oper-
able to communicate with the server using a block I/O (Input/
Output) access, and a memory. The method comprises man-
aging (1) a first portion of storage areas of the memory to
allocate for storing data, which is to be stored in a physical
address space managed by an operating system on the server
and which is sent from the server via the first type interface,
and (2) a second portion of the storage areas of the memory to
allocate for caching data, which is sent from the server to a
logical volume of the storage system via the second type
interface and which is to be stored in a storage device of the
storage system corresponding to the logical volume.

In some embodiments, the method further comprises
removing the server from an entry of a server memory allo-
cate table which stores information on allocated memory by
the storage system for one or more servers, if a remote
memory interface of the server for communicating with the
first type interface is stopped or if a remote free request is
received from the server.

Another aspect of this invention is directed to a computer-
readable storage medium storing a plurality of instructions
for controlling a data processor to manage memory for a

US 9,304,828 B2

3

storage system having a first type interface being operable to
communicate with a server using a remote memory access, a
second type interface being operable to communicate with
the server using a block /O (Input/Output) access, and a
memory. The plurality of instructions comprise instructions
that cause the data processor to manage (1) a first portion of
storage areas of the memory to allocate for storing data,
which is to be stored in a physical address space managed by
an operating system on the server and which is sent from the
server via the first type interface, and (2) a second portion of
the storage areas of the memory to allocate for caching data,
which is sent from the serverto alogical volume of the storage
system via the second type interface and which is to be stored
in a storage device of the storage system corresponding to the
logical volume.

In some embodiments, the plurality of instructions further
comprise instructions that cause the data processor to manage
capacity information for each media type of the memory in
the storage system, wherein the memory includes at least one
of DRAM memory or Flash memory. The plurality of instruc-
tions further comprise instructions that cause the data proces-
sor, if a remote memory interface of the server for communi-
cating with the first type interface is stopped, to remove the
server from an entry of a server memory allocate table which
stores information on allocated memory by the storage sys-
tem for one or more servers. The plurality of instructions
further comprise instructions that cause the data processor, in
response to a remote memory binding request with one of
required capacity and memory performance or memory
assign location range of'the first portion of storage areas of the
memory from the server, to return memory binding result
with mapped address information to the server. The plurality
of instructions further comprise instructions that cause the
data processor, in response to a remote free request from the
server, to remove the server from an entry of a server memory
allocate table which stores information on allocated memory
by the storage system for one or more servers.

These and other features and advantages of the present
invention will become apparent to those of ordinary skill in
the art in view of the following detailed description of the
specific embodiments.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates an Example of a hardware configuration
of'a system in which the method and apparatus of the inven-
tion may be applied.

FIG. 2 shows an example of memory address mapping for
the configuration of FIG. 1.

FIG. 3 shows an example of a detailed configuration of the
system of FIG. 1.

FIG. 4 shows an example of memory partition in the stor-
age system.

FIG. 5 shows an example of memory address mapping for
DRAM and Flash memory hierarchy and remote access for
the configuration of FIGS. 3 and 4.

FIG. 6 shows an example of a hardware configuration of a
system having multiple storage systems.

FIG. 7 shows an example of memory address mapping for
DRAM and Flash memory hierarchy and remote access for
the configuration of FIG. 6.

FIG. 8 shows an example of a hardware configuration of a
system having multiple servers and multiple storage systems.

FIG. 9 shows an example of memory address mapping for
DRAM and Flash memory hierarchy and remote access for
the configuration of FIG. 8.

10

15

20

25

30

35

40

45

50

55

60

65

4

FIG. 10 shows an example of the device discovery table in
the host server.

FIG. 11 shows an example of the address mapping table in
the host server.

FIG. 12 shows an example of the memory partition table in
the storage.

FIG. 13 shows an example of the server memory allocate
table in the storage.

FIG. 14 is an example of a flow diagram illustrating a
process flow of the memory device discovery and initializa-
tion process.

FIG. 15 is an example of a flow diagram illustrating a
process flow of the memory device discovery and initializa-
tion process.

FIG. 16 is an example of a flow diagram illustrating a
process flow of server memory allocation.

FIG. 17 is an example of a flow diagram illustrating a
process flow of server memory de-allocation (free) system
call.

FIG. 18 is an example of a flow diagram illustrating a
memory read operation.

FIG. 19 is an example of a flow diagram illustrating a
memory write operation.

FIG. 20 is an example of a flow diagram illustrating a block
1/O write operation.

FIG. 21 is an example of a flow diagram illustrating a block
1/O read operation.

DETAILED DESCRIPTION OF THE INVENTION

In the following detailed description of the invention, ref-
erence is made to the accompanying drawings which form a
part of the disclosure, and in which are shown by way of
illustration, and not of limitation, exemplary embodiments by
which the invention may be practiced. In the drawings, like
numerals describe substantially similar components through-
out the several views. Further, it should be noted that while the
detailed description provides various exemplary embodi-
ments, as described below and as illustrated in the drawings,
the present invention is not limited to the embodiments
described and illustrated herein, but can extend to other
embodiments, as would be known or as would become known
to those skilled in the art. Reference in the specification to
“one embodiment,” “this embodiment,” or “these embodi-
ments” means that a particular feature, structure, or charac-
teristic described in connection with the embodiment is
included in at least one embodiment of the invention, and the
appearances of these phrases in various places in the specifi-
cation are not necessarily all referring to the same embodi-
ment. Additionally, in the following detailed description,
numerous specific details are set forth in order to provide a
thorough understanding of the present invention. However, it
will be apparent to one of ordinary skill in the art that these
specific details may not all be needed to practice the present
invention. In other circumstances, well-known structures,
materials, circuits, processes and interfaces have not been
described in detail, and/or may be illustrated in block diagram
form, so as to not unnecessarily obscure the present invention.

Furthermore, some portions of the detailed description that
follow are presented in terms of algorithms and symbolic
representations of operations within a computer. These algo-
rithmic descriptions and symbolic representations are the
means used by those skilled in the data processing arts to most
effectively convey the essence of their innovations to others
skilled in the art. An algorithm is a series of defined steps
leading to a desired end state or result. In the present inven-
tion, the steps carried out require physical manipulations of

US 9,304,828 B2

5

tangible quantities for achieving a tangible result. Usually,
though not necessarily, these quantities take the form of elec-
trical or magnetic signals or instructions capable of being
stored, transferred, combined, compared, and otherwise
manipulated. It has proven convenient at times, principally
for reasons of common usage, to refer to these signals as bits,
values, elements, symbols, characters, terms, numbers,
instructions, or the like. It should be borne in mind, however,
that all of these and similar terms are to be associated with the
appropriate physical quantities and are merely convenient
labels applied to these quantities. Unless specifically stated
otherwise, as apparent from the following discussion, it is
appreciated that throughout the description, discussions uti-
lizing terms such as “processing,” “computing,” “calculat-
ing,” “determining,” “displaying,” or the like, can include the
actions and processes of a computer system or other informa-
tion processing device that manipulates and transforms data
represented as physical (electronic) quantities within the
computer system’s registers and memories into other data
similarly represented as physical quantities within the com-
puter system’s memories or registers or other information
storage, transmission or display devices.

The present invention also relates to an apparatus for per-
forming the operations herein. This apparatus may be spe-
cially constructed for the required purposes, or it may include
one or more general-purpose computers selectively activated
or reconfigured by one or more computer programs. Such
computer programs may be stored in a computer-readable
storage medium including non-transient medium, such as, but
not limited to optical disks, magnetic disks, read-only memo-
ries, random access memories, solid state devices and drives,
or any other types of media suitable for storing electronic
information. The algorithms and displays presented herein
are not inherently related to any particular computer or other
apparatus. Various general-purpose systems may be used
with programs and modules in accordance with the teachings
herein, or it may prove convenient to construct a more spe-
cialized apparatus to perform desired method steps. In addi-
tion, the present invention is not described with reference to
any particular programming language. It will be appreciated
that a variety of programming languages may be used to
implement the teachings of the invention as described herein.
The instructions of the programming language(s) may be
executed by one or more processing devices, e.g., central
processing units (CPUs), processors, or controllers.

Exemplary embodiments of the invention, as will be
described in greater detail below, provide apparatuses, meth-
ods and computer programs for hierarchy memory manage-
ment between server and storage system using RDMA tech-
nology.

FIG. 1 illustrates an example of a hardware configuration
of'a system in which the method and apparatus of the inven-
tion may be applied. The system represents a computer envi-
ronment having a host server 1 and a storage 2. The server 1
and storage 2 are connected by block I/O interface 13 such as
SCSI (small computer system interface). The host server 1
has a DRAM memory 11 for storing server memory data and
a processor 12.

FIG. 2 shows an example of memory address mapping for
the configuration of FIG. 1. The server OS (Operation Sys-
tem) has virtual memory address space 200. The server OS
manages to map OS between the virtual memory address
space 200 and the DRAM physical address space 210. When
the server OS allocates memory in the virtual memory
address, the allocator program of the server OS gathers some
segments of the physical address space 210 and maps them to
one contiguous server memory data segment. The server

2 <

10

15

20

25

30

35

40

45

50

55

60

65

6

memory data 40 is one contiguous memory segment in the
virtual address space 200. The allocation data 41 is the actual
memory segment of the server memory data 40 in the physical
address space 210. The server memory data 40 is mapped to
one or multiple segments of the allocation data 41.

FIG. 3 shows an example of a detailed configuration of the
system of FIG. 1. The host server 1 includes processor 12,
DRAM memory 11 for server memory data, Flash memory
14 for server memory data, and address mapping table 16 for
management of local and remote hierarchy memory address
space. The host server 1 has remote memory interface 15 for
access remote hierarchy memory address space, and block
1/O interface 13 for access data store in the storage 2. The
storage 2 includes processor 22, data store 28, DRAM
memory 21 for hierarchy memory space and cache memory
of the storage data store 28, Flash memory 24 for hierarchy
memory space and cache memory of the storage data store 28,
remote memory interface 25, block I/O interface 23, memory
partition table 26 for partitioning DRAM/Flash memory of
the storage 2 to area of server storage data and area of storage
cache memory, and server memory allocate table 27.

FIG. 4 shows an example of memory partition in the stor-
age system. The storage system 2 has a large capacity of
DRAM memory 21 and Flash memory 24. The memory par-
tition table 26 manages to divide the storage cache memory
area 110 for storage block access data caching and server
memory data area 100 for server physical memory address
space.

FIG. 5 shows an example of memory address mapping for
DRAM and Flash memory hierarchy and remote access for
the configuration of FIGS. 3 and 4. When the host allocates
the server memory data 40 in the logical memory address
space (OS virtual address space), the host OS maps to the
local DRAM or PRAM memory address space 210, remote
DRAM or PRAM address space 220, local flash address
space 230, or remote flash address space 240. When the host
server 1 allocates the server memory data 40, the host OS
issues a memory allocation system call based on the required
highest access frequency to the local DRAM memory 21.
When the host OS or application does not require highest
performance for memory access, the host OS allocates the
server memory data area to Flash memory 24 or remote
DRAM address space 220 or remote Flash memory address
space 240. The host OS manages the address mapping table
16 to allocate region of the physical memory address space
(210-240).

FIG. 6 shows an example of a hardware configuration of a
system having multiple storage systems. In this computer
environment, the server 1 has the same composition as that in
FIG. 3 and each storage 2 has the same composition as that in
FIG. 3. This embodiment involving multiple storage systems
creates a “distributed physical address space” 50 of server
memory data using storage DRAM memory 21 and storage
Flash memory 24. The distributed physical address space 50
is separated from the storage cache memory space in each of
the multiple storage systems 2.

FIG. 7 shows an example of memory address mapping for
DRAM and Flash memory hierarchy and remote access for
the configuration of FIG. 6. The physical memory address
space 220 of remote DRAM address space and the physical
memory address space 240 of remote Flash address space are
shared by logical memory address 200 of the host 40. There
are one logical memory addresses #1 200, separate remote
DRAM address spaces 220a, 2205, and separate remote Flash
address spaces 240a, 2405.

FIG. 8 shows an example of a hardware configuration of a
system having multiple servers and multiple storage systems.

US 9,304,828 B2

7

Inthis computer environment, the multiple servers 1 share the
distributed physical address space 50 as a server memory
capacity pool.

FIG. 9 shows an example of memory address mapping for
DRAM and Flash memory hierarchy and remote access for
the configuration of FIG. 8. The physical memory address
space 220 of remote DRAM address space and the physical
memory address space 240 of remote Flash address space are
shared by multiple logical memory addresses 200a and 2005
of'the two hosts. There are separate logical memory addresses
#1 200a and #2 2005, separate local DRAM address spaces
210a, 2105, and separate local Flash address spaces 230a,
2305.

FIG. 10 shows an example of the device discovery table 17
in the host server 1. Remote Device field 91 is local address
(local RAM or Flash memory) or identification of remote
memory device such as Inifiniband (Registered Trademark)
name identifier. Memory Device Type field 92 contains media
type of memory such as DRAM, PRAM, or Flash. Assigned
capacity field 93 contains local or remote assigned capacity
that is allocated by server of physical memory address space.

FIG. 11 shows an example of the address mapping table 16
in the host server 1. Virtual memory address field 101 is
address space of host OS virtual address space 200. Remote
Device field 102 is local address (local RAM or Flash
memory) or identification of remote memory device such as
Inifiniband (Registered Trademark) name identifier. Memory
Device Type field 103 contains media type of memory such as
DRAM, PRAM, or Flash. Physical Memory address field 104
contains local or remote physical memory address.

FIG. 12 shows an example of the memory partition table 26
in the storage 2. The memory partition table 26 divides
DRAM memory or Flash memory of storage to server
memory data area and storage cache data area. Physical
Memory address field 111 contains physical memory address
of the storage Flash or storage DRAM memory. Memory
Device Type field 112 contains media type of memory such as
DRAM, PRAM,; or Flash. Partition Type field 113 contains
memory area type of storage cache memory area or server
memory data area. Remote Device field 114 contains identi-
fication of remote host server such as Inifiniband (Registered
Trademark) name identifier.

FIG. 13 shows an example of the server memory allocate
table 27 in the storage 2. The server memory allocate table 27
enables to share physical address space of server memory
data amongst multiple servers. Remote Device field 121 con-
tains identification of remote host server such as Inifiniband
(Registered Trademark) name identifier. Memory Device
Type field 122 contains local resource media type of memory
such as DRAM, PRAM, or Flash. Physical Memory address
field 123 contains local physical memory address.

FIG. 14 is an example of a flow diagram illustrating a
process flow of the memory device discovery and initializa-
tion process. When the network 51 detects a new server or
storage device, the network 51 notifies all devices. Then the
host server 1 discovers a new storage device 2 that has remote
memory device capability (step S131). The host server 1 adds
the remote memory device resource to the remote device
entry 91 of the device discovery table 17 (FIG. 10). In step
S132, the host server 1 gets the capacity information for each
media type for each new discovery remote memory device,
and constructs the memory type entry 92 and assigned capac-
ity entry 93 of the device discovery table 17. In step S136, the
storage 2 returns capacity information to the reference
memory partition table 26. The memory partition table con-
tains available capacity of remote physical memory that the
host uses to remote physical memory. In S136, the storage

5

10

15

20

25

30

35

40

45

50

55

60

65

8

returns capacity information of the remote physical memory.
In step S133, the host server 1 determines which host server
has enough memory capacity or memory performance. If the
capacity or performance is enough (YES), the program skips
step S134 and proceeds to step S135. Otherwise, the program
performs step S134, in which the host server 1 requests more
capacity allocation to a specific memory type. When the
storage 2 receives the request, the storage 2 returns good
result with memory type and allocation capacity. If the stor-
age 2 does not have more resources to allocate any capacity to
the host server, then the storage returns a bad status with alack
of capacity error. In step S135, the host OS updates the
memory capacity. The host OS dynamically updates the
physical capacity without OS reboot or shutdown process.

FIG. 15 is an example of a flow diagram illustrating a
process flow of the memory device discovery and initializa-
tion process. In step S141, the administrator stops the server
OS or the application program running the host serve 1 issues
a free memory call. In step S142, the storage 2 de-allocates
the memory corresponding to the host server. In step S143, if
the remote memory interface of the host server 1 is stopped,
the storage 2 removes entry of the specific server device
(Remote Device) entry of the server memory allocate table 27
(FIG. 13).

FIG. 16 is an example of a flow diagram illustrating a
process flow of server memory allocation (alloc). In step
S151, the host OS requests new server memory data. The
application of the host 1 issues a memory allocation system
call to the host OS. In step S152, if the local memory of the
host server has sufficient capacity (YES), then the host OS
allocates local memory and proceeds to step S156. If the local
memory of the host server does not have sufficient capacity or
the higher performance memory capacity such as DRAM is
insufficient (NO), then the program performs steps S153 to
S155 before step S156.

In step S153, the host server 1 checks the remote memory
capacity using the device discovery table 17. If remote
memory is available (YES), then the next step is S154. If
remote memory is not available (NO), then memory alloca-
tion has failed and the host OS requires a swap operation to
expand capacity of total memory. The swap operation is vir-
tual memory address map to memory data move to file block
and store to data store of block storage. In step S154, the host
memory issues a remote memory binding request such as
RDMA operation memory allocation functionality to the
storage memory interface. The host requests memory binding
with required capacity and memory performance or memory
assign location range of remote DRAM area or remote Flash
area. In step S155, the storage 2 updates the server memory
allocation table 27 and returns physical memory of remote
DRAM or Flash address space which host requests specific
performance or remote memory address space. The storage
returns memory binding result with mapped address informa-
tion. In step S156, the host OS updates the address mapping
table 16 to allocate local or remote memory. Application is
used to access the server memory data that is mapped to local
memory area, or remote memory area using RDMA.

FIG. 17 is an example of a flow diagram illustrating a
process flow of server memory de-allocation (free) system
call. In step S161, the host OS requests to free server memory
data. Application of the host 1 issues a memory de-allocation
(memory free) system call to the host OS. In step S162, if the
allocation area is local memory of the host server (YES), then
the host OS de-allocates the local memory and proceeds to
step S166. Ifthe allocation area is remote memory (NO), then
the program performs steps S163 to S165 before steps S166.

US 9,304,828 B2

9

Instep S163, the host memory issues a remote memory free
request to the remote memory interface 25 of the storage 2. In
step S164, the storage 2 checks the remote memory capacity
using the device discovery table 17. If the remote memory is
allocated (YES), then the next step is S165. If the remote
memory is not allocated (NO), then the memory free request
has failed due to memory address violation. The remote
memory interface 25 of the storage 2 returns result with
memory violation error response, and then the host OS per-
forms memory error handling. In step S165, the storage 2
updates the server memory allocation table 27 to remove
specific entry and return result of memory free request. In step
S166, the host OS updates the address mapping table 16 to
remove specific remote memory allocation entry, and then to
de-allocate local or remote memory. The virtual memory
address space of host server cleanup server memory data.

FIG. 18 is an example of a flow diagram illustrating a
memory read operation. The host 1 issues a memory read
operation to the storage 2. The storage checks the server
memory allocate table 27 for the allocated physical address
123, sends the read data from the server memory data area 100
to the host, and returns result of the memory read operation to
the host. The data transfer from the storage to the host occurs
when the storage sends the read data from the server memory
data area 100 to the host.

FIG. 19 is an example of a flow diagram illustrating a
memory write operation. The host 1 issues a memory write
operation to the storage 2. The storage checks the server
memory allocate table 27 for the allocated physical address
123, reads data from the host to the server memory data area
100 of the storage, and returns result of the memory write
operation to the host. The data transfer from the storage to the
host and back to the storage occurs when the storage reads
data from the host to the server memory data area 100 of the
storage. This flow is for “server write memory data in the
server local memory to remote memory.” The server issues a
memory write command to the storage via the RDMA inter-
face. Inthe next step, the storage receives the RDMA memory
write command. The storage checks the server memory allo-
cate table 27 for the allocated physical address 123. Then, the
storage gets (read) write data which has already existed in the
server local memory (host write data). The RDMA data trans-
fer operation is initiated by the target. The host sends write
memory data to the storage. The storage performs the RDMA
write operation to read the host local memory data.

FIG. 20 is an example of a flow diagram illustrating a block
1/O write operation. The host 1 issues a block /O write
operation to the storage 2. The storage checks the memory
partition table 26 for the partition type 113 (storage cache)
and the physical memory address 111, and notifies the host 1
when it is ready for data transfer. In response, the host sends
write data to the storage. The storage stores the write data to
the storage cache area 110, returns result of the block I/O
write operation to the host, and destages dirty data from the
storage cache area 110 to the data store 28. The data transfer
from the host to the storage occurs when the host sends the
write data to the storage.

FIG. 21 is an example of a flow diagram illustrating a block
1/0 read operation. The host 1 issues a block /O read opera-
tion to the storage 2. The storage checks the memory partition
table 26 for the partition type 113 (storage cache) and the
physical memory address 111, performs staging of read data
from the data store 28 to the cache memory area 110, sends
block read I/O data to the host, and returns result of the block
1/0O read operation to the host. The data transfer occurs from
the storage to the host when the storage returns block read I/O
data to the host.

10

15

20

25

30

35

40

45

50

55

60

65

10

Of course, the system configurations illustrated in FIGS. 1,
6, and 7 are purely exemplary of information systems in
which the present invention may be implemented, and the
invention is not limited to a particular hardware configura-
tion. The computers and storage systems implementing the
invention can also have known I/O devices (e.g., CD and
DVD drives, floppy disk drives, hard drives, etc.) which can
store and read the modules, programs and data structures used
to implement the above-described invention. These modules,
programs and data structures can be encoded on such com-
puter-readable media. For example, the data structures of the
invention can be stored on computer-readable media indepen-
dently of one or more computer-readable media on which
reside the programs used in the invention. The components of
the system can be interconnected by any form or medium of
digital data communication, e.g., a communication network.
Examples of communication networks include local area net-
works, wide area networks, e.g., the Internet, wireless net-
works, storage area networks, and the like.

In the description, numerous details are set forth for pur-
poses of explanation in order to provide a thorough under-
standing of the present invention. However, it will be apparent
to one skilled in the art that not all of these specific details are
required in order to practice the present invention. It is also
noted that the invention may be described as a process, which
is usually depicted as a flowchart, a flow diagram, a structure
diagram, or a block diagram. Although a flowchart may
describe the operations as a sequential process, many of the
operations can be performed in parallel or concurrently. In
addition, the order of the operations may be re-arranged.

As is known in the art, the operations described above can
be performed by hardware, software, or some combination of
software and hardware. Various aspects of embodiments of
the invention may be implemented using circuits and logic
devices (hardware), while other aspects may be implemented
using instructions stored on a machine-readable medium
(software), which if executed by a processor, would cause the
processor to perform a method to carry out embodiments of
the invention. Furthermore, some embodiments of the inven-
tion may be performed solely in hardware, whereas other
embodiments may be performed solely in software. More-
over, the various functions described can be performed in a
single unit, or can be spread across a number of components
in any number of ways. When performed by software, the
methods may be executed by a processor, such as a general
purpose computer, based on instructions stored on a com-
puter-readable medium. If desired, the instructions can be
stored on the medium in a compressed and/or encrypted for-
mat.

From the foregoing, it will be apparent that the invention
provides methods, apparatuses and programs stored on com-
puter readable media for hierarchy memory management
between server and storage system using RDMA technology.
Additionally, while specific embodiments have been illus-
trated and described in this specification, those of ordinary
skill in the art appreciate that any arrangement that is calcu-
lated to achieve the same purpose may be substituted for the
specific embodiments disclosed. This disclosure is intended
to cover any and all adaptations or variations of the present
invention, and it is to be understood that the terms used in the
following claims should not be construed to limit the inven-
tion to the specific embodiments disclosed in the specifica-
tion. Rather, the scope of the invention is to be determined
entirely by the following claims, which are to be construed in
accordance with the established doctrines of claim interpre-
tation, along with the full range of equivalents to which such
claims are entitled.

US 9,304,828 B2

11

What is claimed is:

1. A storage system comprising:

afirst type interface being operable to communicate with a
server using a remote memory access;

a second type interface being of a different type from the
first type interface and being operable to communicate
with the server using a block I/O (Input/Output) access;

a memory; and

a controller being operable to manage partitioning of the
memory into (1) a first portion of storage areas of the
memory to allocate for storing data, which is sent from
the server via the first type interface and which is to be
stored in a physical address space of the memory, the
physical address space being managed by an operating
system on the server, the first type interface providing
access from the server to the first portion of storage areas
of the memory which is mapped to a virtual memory
address space on the server so as to expand a memory
capacity of the server, and (2) a second portion of the
storage areas of the memory to allocate for caching
block data, which is sent from the server to a logical
volume of the storage system via the second type inter-
face and which is to be stored in a storage device of the
storage system corresponding to the logical volume, the
second type interface providing access from the server to
the second portion of storage areas of the memory so as
to store the block data in the storage device of the storage
system corresponding to the logical volume.

2. The storage system according to claim 1,

wherein the controller is operable to manage capacity
information for each media type of the memory in the
storage system.

3. The storage system according to claim 1,

wherein the memory includes at least one of DRAM
memory or Flash memory.

4. The storage system according to claim 1,

wherein the controller is operable to manage (3) a third
portion of storage areas of the memory to allocate for
storing data, which is sent from another server via the
first type interface and which is to be stored in another
physical address space of the memory, said another
physical address space being managed by an operating
system on said another server, and to manage the second
portion of the storage areas of the memory to allocate for
caching data, which is sent from said another server to a
logical volume of the storage system via the second type
interface and which is to be stored in a storage device of
the storage system corresponding to the logical volume;

wherein the third portion of storage areas of the memory of
the storage system is mapped to a virtual memory
address space of said another server.

5. The storage system according to claim 1,

wherein the controller is operable to provide, to the server
in response to a request from the server, capacity infor-
mation for each media type of the first portion of storage
areas of the memory in the storage system.

6. The storage system according to claim 1,

wherein the controller is operable, if a remote memory
interface of the server for communicating with the first
type interface is stopped, to remove the server from an
entry of a server memory allocate table which stores
information on allocated memory by the storage system
for one or more servers.

7. The storage system according to claim 1,

wherein the controller is operable, in response to a remote
memory binding request with one of required capacity
and memory performance or memory assign location

35

40

45

50

65

12

range of the first portion of storage areas of the memory
from the server, to return memory binding result with
mapped address information to the server.

8. The storage system according to claim 1,

wherein the controller is operable, in response to a remote

free request from the server, to remove the server from
an entry of a server memory allocate table which stores
information on allocated memory by the storage system
for one or more servers.

9. The storage system according to claim 1,

wherein the data that is sent from the server to be stored in

the physical address space of the memory of the storage
system was stored in a local memory area of the server;
and

wherein the local memory area is de-allocated when the

data is stored in the physical address space of the
memory of the storage system.

10. The storage system according to claim 1,

wherein the data is stored in one or more segments of the

physical address space which are mapped to one con-
tiguous server memory data segment of the virtual
memory address space.

11. A method of memory management for a storage system
having a first type interface being operable to communicate
with a server using a remote memory access, a second type
interface being of a different type from the first type interface
and being operable to communicate with the server using a
block 1/O (Input/Output) access, and a memory, the method
comprising:

managing partitioning of the memory into (1) a first portion

of storage areas of the memory to allocate for storing
data, which is sent from the server via the first type
interface and which is to be stored in a physical address
space of the memory, the physical address space being
managed by an operating system on the server, the first
type interface providing access from the server to the
first portion of storage areas of the memory which is
mapped to a virtual memory address space on the server
so as to expand a memory capacity of the server, and (2)
a second portion of the storage areas of the memory to
allocate for caching block data, which is sent from the
server to a logical volume of the storage system via the
second type interface and which is to be stored in a
storage device of the storage system corresponding to
the logical volume, the second type interface providing
access from the server to the second portion of storage
areas of the memory so as to store the block data in the
storage device of the storage system corresponding to
the logical volume.

12. The method according to claim 11, further comprising:

managing (3) a third portion of storage areas of the memory

to allocate for storing data, which is sent from another
server via the first type interface and which is to be
stored in another physical address space of the memory,
said another physical address space being managed by
an operating system on said another server, and manag-
ing the second portion of the storage areas of the
memory to allocate for caching data, which is sent from
said another server to a logical volume of the storage
system via the second type interface and which is to be
stored in a storage device of the storage system corre-
sponding to the logical volume;

wherein the third portion of storage areas of the memory of

the storage system is mapped to a virtual memory
address space of said another server.

US 9,304,828 B2

13

13. The method according to claim 11, further comprising:

providing, to the server in response to a request from the
server, capacity information for each media type of the
first portion of storage areas of the memory in the storage
system.

14. The method according to claim 11, further comprising:

removing the server from an entry of a server memory

allocate table which stores information on allocated
memory by the storage system for one or more servers,
if a remote memory interface of the server for commu-
nicating with the first type interface is stopped or if a
remote free request is received from the server.

15. The method according to claim 11, further comprising:

in response to a remote memory binding request with one

of required capacity and memory performance or
memory assign location range of the first portion of
storage areas of the memory from the server, returning
memory binding result with mapped address informa-
tion to the server.

16. A non-transitory computer-readable storage medium
storing a plurality of instructions for controlling a data pro-
cessor to manage memory for a storage system having a first
type interface being operable to communicate with a server
using a remote memory access, a second type interface being
of a different type from the first type interface and being
operable to communicate with the server using a block 1/O
(Input/Output) access, and a memory, the plurality of instruc-
tions comprising:

instructions that cause the data processor to manage parti-

tioning of the memory into (1) a first portion of storage
areas of the memory to allocate for storing data, which is
sent from the server via the first type interface and which
is to be stored in a physical address space of the memory,
the physical address space being managed by an oper-
ating system on the server, the first type interface pro-
viding access from the server to the first portion of
storage areas of the memory which is mapped to a virtual
memory address space on the server so as to expand a
memory capacity of the server, and (2) a second portion
of' the storage areas of the memory to allocate for cach-
ing block data, which is sent from the server to a logical
volume of the storage system via the second type inter-
face and which is to be stored in a storage device of the
storage system corresponding to the logical volume, the
second type interface providing access from the server to
the second portion of storage areas of the memory so as

5

10

15

20

25

30

35

40

45

14

to store the block data in the storage device of the storage
system corresponding to the logical volume.

17. The non-transitory computer-readable storage medium
according to claim 16, wherein the plurality of instructions
further comprise:

instructions that cause the data processor to manage capac-

ity information for each media type of the memory in the
storage system,

wherein the memory includes at least one of DRAM

memory or Flash memory.
18. The non-transitory computer-readable storage medium
according to claim 16, wherein the plurality of instructions
further comprise:
instructions that cause the data processor to manage (3) a
third portion of storage areas of the memory to allocate
for storing data, which is sent from another server viathe
first type interface and which is to be stored in another
physical address space of the memory, said another
physical address space being managed by an operating
system on said another server, and to manage the second
portion of the storage areas of the memory to allocate for
caching data, which is sent from said another server to a
logical volume of the storage system via the second type
interface and which is to be stored in a storage device of
the storage system corresponding to the logical volume;

wherein the third portion of storage areas of the memory of
the storage system is mapped to a virtual memory
address space of said another server.

19. The non-transitory computer-readable storage medium
according to claim 16, wherein the plurality of instructions
further comprise:

instructions that cause the data processor to provide, to the

server in response to a request from the server, capacity
information for each media type of the first portion of
storage areas of the memory in the storage system.

20. The non-transitory computer-readable storage medium
according to claim 16, wherein the plurality of instructions
further comprise:

instructions that cause the data processor, if a remote

memory interface of the server for communicating with
the first type interface is stopped, to remove the server
from an entry of a server memory allocate table which
stores information on allocated memory by the storage
system for one or more servers.

#* #* #* #* #*

